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Speed limits on swimming of fishes
and cetaceans

G. Tosilevskii* and D. Weihs

Faculty of Aerospace Engineering, Technion, Haifa 32000, Israel

Physical limits on swimming speed of lunate tail propelled aquatic animals are proposed.
A hydrodynamic analysis, applying experimental data wherever possible, is used to show that
small swimmers (roughly less than a metre long) are limited by the available power, while larger
swimmers at a few metres below the water surface are limited by cavitation. Depending on the
caudal fin cross-section, 10-15 m s~ ' is shown to be the maximum cavitation-free velocity for all

swimmers at a shallow depth.

Keywords: swimming speed; maximal speed limit; cavitation

1. INTRODUCTION

In a curious example of converging evolution, all of the
fastest marine swimmers have similar propulsion systems
that are based on a narrow crescent caudal fin, better
known as the ‘lunate tail’ (Lighthill 1969). Dolphins,
tunas and mackerel sharks are obvious members of this
group. Since the pioneering work of Gray (1936), the
maximal speed attainable by these swimmers has been
repeatedly debated (e.g. Wardle 1975; Wardle & Videler
1980), undoubtedly fuelled by reports of yellowfin tuna
and wahoo swimming faster than 20 m s~ " (Walters &
Fierstein 1964) and anecdotal reports of dolphins over-
taking fast vessels. Yet undisturbed measurements of
dolphin swimming (Fish & Rohr 1999) have never
resulted in speeds in excess of 15 m s~ !, suggesting that
reports of much higher speeds could have been biased by
proximity to the observing vessel (Weihs 2004).

In this study, we show that a swimming speed in
excess of 15 m s~ " is hardly possible at a shallow depth
due to cavitation of the caudal fin. To this end, we
examine possible limits on the maximal speed attain-
able by lunate tail propulsion, which result from (i)
maximal power that can be produced by the swimmer’s
muscles, (ii) a combination of the hydrodynamic stall of
the fin and the (physiological) limit on the maximal tail
beat frequency, and (iii) from an onset of cavitation.

Stall, and the associated loss of hydrodynamic lift
and rise of drag, is caused by boundary layer separation
from the foil surface (Batchelor 1990). The boundary
layer separates either due to an unfavourable pressure
gradient over the leeward surface of the fin (henceforth
referred as ‘standard’ stall) or due to appearance of
vapour bubbles, forming whenever the surface pressure
drops below the vapour pressure of the liquid in which
the fin moves. The latter phenomenon is known as
cavitation (Batchelor 1990). These vapour bubbles
move downstream into the area of higher pressure and
collapse. If the collapse occurs at the fin surface (and it
depends on operating conditions), damage may occur to
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the fin surface. If the collapse occurs downstream of the
trailing edge, it suggests a cavitation-triggered stall.
The unfavourable pressure gradient increases with the
increasing angle of incidence of the fin. The surface
pressure drops both with the increasing angle of
incidence and the swimming speed. Since a high angle
of incidence is necessary to increase the speed for a
given tail beat frequency, both stall and cavitation limit
the thrust produced by the fin and hence set limits on
the maximal swimming speed.

Prerequisites to our analysis of the speed limits are
relations between the angle of incidence of the fin (or,
rather, its lift coefficient), its velocity relative to the
fluid, the swimming velocity and, of course, the power
required to move the fin. In principle, these relations can
be extracted from any of the numerous studies published
during the last 40 years; the works of Lighthill (1970),
Chopra (1974, 1976), Chopra & Kambe (1977) and
Cheng & Murillo (1984) are pertinent examples. None-
theless, we prefer using none of them ‘as is’. Being aimed
at calculating the propulsion efficiency and the tail
feathering as accurately as possible, they are too
detailed for the basic analysis we perform here. Hence,
we begin this study by recapitulating the analysis of
lunate tail propulsion using as simple an approach as we
believe practical.

2. ANALYSIS
2.1. Balance of forces

Consider a fish of length Imoving with a constant velocity
u in a fluid of density p by caudal fin propulsion. The
caudal fin has an area S;; it oscillates laterally with an
amplitude h = hl and a frequency f, moving with a lateral
velocity v. The lift L and drag D of the caudal fin can be
expressed in terms of its respective lift and drag
coefficients, Cr, and Cp,

1 1
L= §,o(u2 +¢%)S.C;, and D = EP(UQ + %S, Cp.
(2.1)

This journal is © 2007 The Royal Society
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Figure 1. Swimming model. With fish body moving along the solid horizontal line, the tail is assumed to move along the dotted
sawtooth trajectory. Its wave-length, z, is the stride length and its depth is 2h. The ratio of 4h and z is also the ratio of the
(presumably constant) lateral tail velocity v to the (constant) swimming velocity u.

Likewise, the drag of the body, without the fin, can be
expressed in terms of its drag coefficient, Cp 3, by

1
Dy, = 5/7’“250 Cpyp-

Note that all hydrodynamic coefficients defined thus far,
lift and drag of the caudal fin and the drag of the body, use
the caudal fin area as the reference area.

In order to simplify the following derivations, it will
be assumed that the lateral velocity, v, as well as the lift
and drag coefficients, Cp, and Cp, of the caudal fin are
constants, with vand Cf, changing side each half period
(figure 1). Limitations of this assumption will be
discussed later on.

Now, let = v/u be the ratio of lateral-to-forward
velocities. Under the present assumptions, this ratio is
closely related with the stride length == u/fl—the
distance in body lengths travelled during one period. In
fact, under present assumptions, v=4hf and, therefore,

v = 4h/z. (2.3)
For constant speed swimming, the forward thrust

produced by the caudal fin should balance the drag of the
fish and the fin combined. Hence, after rearrangement

(2.2)

1 2 2 ( UCL U:CD > 1 2
—p(v° + u”)S, - =—pu S, C
2 ( ) ViZ+u? V2 +d? 2 Db
(2.4)
or, eventually,
(CL’T)_ CD) V 1 + 772 = CD‘b' (25)

2.2. Power

The power spent by the caudal fin during the stroke is
given by

PZ;p(v2+u2)ch< Ghu + Chv >

ViR + w2 VR +d?

1
= §pu386(CL + 5Ch)TV 1 + 2. (2.6)

Applying the longitudinal force balance (2.5), equation
(2.6) can be recast as

P=P, (1 + (1 + %)% i) (2.7)
Coy
where

1
Pb = _pUSScCDJw

- (2.8)

J. R. Soc. Interface (2008)

is the power required to move the fish body (caudal fin
excluded) at velocity u, and the term in parentheses can
be interpreted as the reciprocal of a propulsive
efficiency 7, i.e.

n = i = CD’b
P Chp+ 1+,

(2.9)

2.3. Drag coefficients

In order to make use of the above results, the actual
values for the drag coefficients are needed. The value of
coasting (stretched straight) Cp, for scombrids can be
estimated from the data presented in tables V, VI, VII,
X and XI of Magnuson (1978); it turns out to be
approximately 0.2." The value of Cp), for delphinids
and lamnids should be slightly higher owing to the drag
of their fixed dorsal and pectoral fins. When strenuously
swimming, the average body drag may increase (Fish &
Rohr 1999; Weihs 2004). We shall avoid addressing this
issue specifically by providing estimates of swimming
velocity limits for different drag coefficients.

The drag coefficient of the caudal fin Cp can be
estimated based on the standard parabolic relation
(Nicolai 1984),

Cp = Cpy + kCH, (2.10)

where Cp and k are constants. Cp q is estimated to be
approximately 0.01 and is known to be rather
insensitive to the particular fin ‘design’ (Jacobs
1931b); k depends mainly on the fin aspect ratio
(Nicolai 1984) and is bounded between 0.05 and 0.1
for all the swimmers mentioned earlier.”

'Based on table V, the body drag coefficient is estimated to be
approximately 0.005 when referred to the body surface area.
Assuming similarity in body shape among the scombrids (table
VII), their surface area can be approximated as 0.4512 (indeed, a
44 cm long skipjack tuna has a surface area of 840 cm® (table VI),
whereas 40 cm long Kawakawa has the surface area of 720 cm? (table
XI). At the same time, caudal fin area, for most scombrids, is
approximately 0.011/7 (table X). Hence, the representative value of
Cp,p, is approximately 0.2—0.005 times the body area divided by the
caudal fin area.

*For symmetrical cross-sections at the pertinent range of Reynolds
numbers, Cpy is typically found between 0.008 and 0.012 (Jacobs
1931b). The value of k can be estimated using semi-empirical formula
k=1/(wAe)+ 6, relating it with the aspect ratio 4 of the fin, span-wise
loading correction constant e, typically approximately 0.9, and profile
parasite drag rise constant ¢, typically approximately 0.01 (Jacobs
1931b; Nicolai 1984). Since 4 < A <8 for most scombrids (Magnuson
1978), therefore 0.05<k<0.1.
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2.4. Stall and maximal lift coefficient cross-section shapes, the expression for Cp . has a
similar form, but with a slightly different relation
between o and the thickness ratio ¢/ c. Typical values of
7 range from 0.28 to 0.93—the former is the charac-
teristic of the 8-9% chord thick sections of scombrids
(F. Fish 2006, personal communication), and the latter
is the characteristic of the 20% chord thick sections of
delphinids and lamnids (Lingham-Soliar 2005). Associ-
ated values of u4, when swimming near the sea surface,
range between 22 and 15 m s, respectively.
Equation (2.11) indicates that cavitation will

Any foil can keep the flow attached to both its surfaces
only up to a certain angle of attack. Above that angle,
the flow on the leeward (suction) surface of the foil
separates due to an unfavourable pressure gradient
(with pressure increasing towards the trailing edge),
causing a loss of lift and an increase in drag; this
phenomenon is called ‘stall’. At high Reynolds
numbers in air, the lift coefficient obtained on the
verge of stall is the maximal lift coefficient, Cf, ax,

which can be generated by the foil. It varies between .
1.0 and 1.2 ( szcobs 1931(1}[;) for both scombrids. which precede the standard stall whenever the fin velocity
. M ) b -9 2 2 . .
have a relatively thin caudal fin cross-section with ~ ¢V1+ 0" exceeds uaT/\) O max T 775 1.¢. approxi-

Interface

N a thickness-to-chord ratio of approximately 0.09  mately 6ms ' for scombrids and 10 m s ! for delphi-
E:QE (F. Fish 2006, personal communication), and delphi- nids and' lamnlds near thej sea sur'face. Cavitation
gu 29 nids and lamnids, which have a much thicker caudal becorpes imminent at any lift c.oefﬁ(nent once the ﬁ.n
e cross-section with thickness-to-chord ratio of up to 0.2 velocity exceeds uq. However, since the fin velocity is

(Lingham-Soliar 2005). always greater than the swimming velocity and
swimming requires a finite (non-zero) lift coefficient to
produce thrust, the swimming velocity at which

2.5. Cavitation cavitation develops will always be lower than ug, as,

At sufficiently high swimming velocity, the pressure  indeed, will be shown below.

due to acceleration of the flow around the leading edge

may locally drop below the vapour pressure, causing

vapour-filled cavities (bubbles) to appear. This 3 SWIMMING VELOCITY LIMITS

phenomenon is known as cavitation (Batchelor 1990). o

The bubbles are carried downstream by the flow into -1 Power limit

the rear high-pressure region mentioned above, where  Given any swimming velocity u, there are an infinite
they collapse. If the collapse occurs on the surface of the  jumber of combinations of the lift coefficient and the
foil, it can damage the surface of the foil. If the collapse  Jateral velocity satisfying equation (2.5). For each
occurs downstream of the training edge, it suggests a  combination, the power required to move the fish
fully separated flow regime, which can be referred to as  through water can be computed using equation (2.7).
a cavitation-induced stall. In apparent contrast with  The power is infinite for both vanishingly small and
the standard pressure-gradient-induced stall, the lift  ipfinitely large lift coefficients—3o turns infinite for the
coefficient obtained on the verge of cavitation-induced  former by equation (2.5), and Cp, turns infinite for the

Interface

2|z stall i.s not necessarﬂy the .maxin}al possible .lift latter by equation (2.10). Hence, the power has a
zl éE c.oefﬁment. at that velocity. This maximal (cavitating)  minimum P =Py/Nmax for a certain finite lift
20 §g lift .coefﬁment is probably 'alm.ost the same as the non-  ¢oefficient (at which the propulsion efficiency 7 reaches
Q| ES cavitating Cp, max. The main difference between the two its maximum 7,,.x). At the same time, there exists a

is in the associated drag coefficient, which is an order of (physiological) maximum P,,,, on the available power

magnitude larger in the cavitating flow. in the fish muscles. Combination of (hydrodynamic)
The lift coefficient C}, . at which cavitation appears is P,in and (physiological) Py yields a limit
derived in appendix A. It is given, approximately, by

2 52 P
- Ud _ u _ 3 Mmax{ max 3.1
CL,C =T 7162(1 + 172) 1, (211) max,P PS(-, OD7b ) ( )
where 7 is a parameter depending on the foil section and
u4 is a parameter depending both on the foil section and
on the fluid pressure at the swimming depth. For
example, for a Joukowski profile (Milne-Thomson

on the maximal swimming velocity.
Lift coefficient Cf yielding a minimum of P (or,
equivalently, a maximum of the propulsion efficiency )

Interface

1973) of thickness t and chord ¢ moving at depth d, can be f(?und by diff.erentiating equation (3.1), §ubject

to equation (2.5), with respect to (i, and equating the

T = woV 240, (2.12) result to zero. With details found in appendix B, the

result is shown in figure 2. Here, E* = 1/(2,/Cp ok) and

ws = PO + pgd (2.13) .. =+/Cpo/k are the best hydrodynamic efficiency

d \/ 3op ' (lift-to-drag ratio) of the caudal fin and the lift

where coefficient at which this efficiency is achieved. Typical

3 N 4 ¢ values of the optimal lift coefficient for all swimmers
Z! é: o= e (2.14)  addressed herein vary between 0.25 (low aspect fins)
80 ;g and 0.3 (high aspect fins) with corresponding efficien-
=|Fa is the shape parameter; p, is the atmospheric pressure; cies of 0.86-0.89. These values are on the higher side,

and g is the acceleration owing to gravity. For different since they exclude unsteady effects (Lighthill 1970).

J. R. Soc. Interface (2008)
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Figure 2. Minimal power required for (a) swimming and (b) the associated lift coefficient. Cp o varies between 0.008 and 0.02
(about twice its maximal expected value), and k varies between 0.05 and 0.1. (a,b) All feasible combinations of these parameters

result in practically indistinguishable differences.

The maximal available power can be always
expressed as a product
(3.2)
of the maximal available power per unit mass of the
swimmer, P,.,., and the swimmer’s mass, p, Vi,; p1, and
Vi, being the body density and volume, respectively.
The body volume for scombrids can be estimated from
the data collected by Magnuson (1978); based on his
table VII and a typical body shape found in his fig. 10,
V,, is approximately 0.021° for Thunnus, Euthynnus and
Augis, and approximately 0.011° for Scomber. The body
density can be found in his table III, but for the sake of
simplicity it can be set roughly equal to that of water.

We could not find a consensus value in the literature
for the maximal available power per unit mass, P, It is
obviously species and conditions dependent, increasing
with body temperature. In the following discussion, we
have bracketed P, with values ranging from 10 to
160 W kg™ ! (Azuma 1992). The resulting values of
Umax,p are shown in figure 6 at the end of this paper. In
the interim, we note that since caudal fin area changes,
approximately, with the length of the swimmer
squared, whereas the maximal available power varies,
approximately, with the length of the swimmer to the
third power, equation (3.1) shows that the maximal
velocity due the available power limit increases with cube
root of the swimmer’s length. Hence, insofar as this limit
is concerned, the fastest swimmers should have large-
volume (high P,,,,) streamlined bodies (low S.Cp,) and
high aspect ratio tails (high 1,,,.). They should preferably
have high body temperature (high P,,,.). Indeed, all are
distinctive features of delphinids, scombrids and lamnids.

Pmax = Pv prmaxa

3.2. Cavitation limat

Substituting equations (2.10) and (2.11) into equation
(2.5) results in the equation

J. R. Soc. Interface (2008)

for the reduced lateral tail velocity v (or its reciprocal,
which is proportional to the stride length) enabling
swimming at velocity « with caudal fin on the verge of
cavitation. Conversely, it can be solved to obtain
the cavitation incipient swimming velocity at a given
stride length

u kT <Z_}2_kCD,b+ CD70V1 +1_]2

w vizo\2 Vit

—(1/2)
5 o T 4k Cpy, + CpoV1 + 02
+ ]f T i? 1 — — =
v v1+wv
(3.4)

The solution of equation (3.3) is shown in figure 3.
First, it is apparent that above a certain velocity
(henceforth referred as ‘u.’), swimming cannot be
sustained without cavitation. Below that threshold,
equation (3.3) has two solutions, ., and 7. ,. Cavita-
tion can be avoided only if v is kept between the two—
moving the tail slower requires higher lift coefficient and
hence invokes cavitation, and moving the tail faster
increases the apparent flow velocity and invokes
cavitation as well.

The solutions of equation (3.3) for a given u have no
closed analytical form in the general case. Yet

U, = 3.5
¢ 149 CD,b:CL)D ( )

_ _ [Cpy + Cpy
Ve = Vel = V2 = f (36)

and
[ Cop+ Cpyp

C.= _— 3.7
Le ST\ T+ Cpp + Cpy 3.7)

provide good approximations for the maximal swim-
ming velocity, the corresponding stride length z, =
4h /v, and the associated lift coefficient (figures 3 and 4).
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(@ (b)
5 20
4 15
N
3 \.
viu x/h 10
2
1 5
0 0.2 0.4 0.6 0.8 0 0.2 04 0.6 0.8

u/ug

U/Ud

Figure 3. Estimated cavitation-free envelopes on (a) the lateral tail velocity and (b) the stride length; cavitation is avoided inside
the envelopes. Right extending envelopes correspond to a typical dolphin-like swimmer with 0.2 chord thick fin having Cp /7=
0.2, Cp,/7=0.01 and 7k=0.05; inner envelopes correspond to a typical tuna-like swimmer with 0.09 chord thick fin having
Cpy/7=0.8, Cp,/7=0.04 and 7k=0.0125. Broken lines mark the approximation (3.8), circles mark the maximal speed estimate
of equations (3.5) and (3.6) and squares mark cavitation appearing at Cp ;=1.2.

@

20
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15
‘—lkn /’—_\1
210 L
e, ot
= .
55

0 005 010 015 0.20 0.25

t/c

(b)
0.6
23
Z2|
0.4
il
CrLc
0.2

0 0.05 010 0.5 020 0.25
t/c

Figure 4. Maximal swimming velocity possible with (a) no cavitation near the sea surface and (b) the caudal fin lift coefficient at
that velocity, plotted against caudal fin thickness-to-chord ratio. Solid lines mark exact numerical solution for the maximum of
equation (3.4) and broken lines mark the estimate based on equations (3.5) and (3.7). (a) The dotted line marks the maximal
swimming velocity possible with no cavitation when the fin is at C;,=1.2. Cp, equals 0.1 (line 1), 0.2 (line 2) and 0.3 (line 3);
Cpp=0.01 and k changes between 0.05 and 0.1 (the difference is imperceptible in the figure).

Likewise,
Cpy + C 1 2
g, =—2b T Do Frky/ 21 (3.8)
) 2 2
T uy 1 U
u2
and

(U_ﬁ_ 1>2 _ (CD.1)+CD.U>2
U T
CL 1=T

CptCho\ 2
_1> +( DIT DU)

provide good approximations for the minimal lateral
velocity (maximal stride length) and the correspond-
ing lift coefficient at no-cavitation boundary (figures 3
and 4).

It was mentioned earlier (see paragraph following
equation (2.14)) that cavitation will precede the

standard stall only if the fin velocity uV1+ ¥? is larger
than ug7// Cf iy + 72 Equation (3.9) allows finding

the corresponding swimming velocity ug. In fact, setting
CL.1= CL max therein and solving it for u/uq yields an

(3.9)

J. R. Soc. Interface (2008)

estimate,
Clmas , 1
uszud<1 + 2;2 +ﬁ
—(1/2)
\/Ci,max +4(Cpy, + Cpy)? (7'2 + C%,max) ;
(3.10)

for the maximal swimming velocity possible with no
cavitation when the fin is on the verge of stall.

The maximal possible swimming velocity with no
cavitation, u, is shown in figure 4 for representative
values of the body drag coefficients; it is somewhere
between 10 and 15 m s~ . This velocity is insensitive to
the fin planform (indeed, approximation (3.5) for u. is
independent of k); it increases as the fin area increases
(lower Cp)) and it has a maximum for thickness-
to-chord ratio of 0.06-0.1. Perhaps a coincidence, but
these values are characteristic for scombrids.

The maximal swimming velocity with no cavitation
at O, max, Us, 1S also shown in figure 4. It almost equals u,.
for delphinids and lamnids (having a thickness ratio of
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(@
1.0 /CD/CL
7
, 0.30
0.8 , 0.03
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Figure 5. (a) Minimal lateral tail velocity and (b) maximal stride length. Broken lines mark approximation (3.11). The values of
Cp/ C1, in the figure range between 0.03 and 0.3; they are marked to the right of the respective lines.

0.2), but it is less than half of u,. for scombrids. In other
words, delphinids can swim on the verge of stall
increasing speed by increasing the tail beat frequency
up until cavitation appears. There remains very little to
gain in the maximal speed by reducing the lift coefficient
and increasing the beat frequency. Scombrids can
accelerate on the verge of stall only up to a relatively
small velocity—almost one-third of their maximal
cavitation-free velocity. The latter can be reached only
by significantly reducing the lift coefficient. It can be
achieved only through excessive (when compared with
delphinids) flexibility of the tail joint.

3.3. Maximal tail beat frequency limit

Given the lift coefficient of the fin, C}, equation (2.5),
subject to equation (2.10), can be solved to yield the
reduced lateral velocity of the tail, v, required to sustain
swimming velocity at that lift coefficient. Although this
solution cannot be expressed in a closed analytical form
in the general case, for all practical values of lift and
drag coefficients,
(Cpy + Cp)
C ’
provides a very good approximation (figure 5a). The
associated stride length, Z=4h/v, is shown in
figure 5b.

At the same time, there exists a (physiological)
maximum f;,,, on the possible tail beat frequency, and
hence there exists a constraint v, = 4hlf,.. on the
maximum possible lateral tail velocity. Combining the
(hydrodynamic) requirement of ¥ and (physiological)
limit vy, of v yields a limit

V=

(3.11)

_ Umax _ 4hlfmax
U’max,f - T - = — )

- : (3.12)

on the maximal swimming velocity at C},. Obviously, a
prerequisite of reaching the cavitation limit addressed
in §3.2 is the ability of the swimmer to move its tail
fast enough. Formally, it is required that v,,., should
exceed 7, 1 u.

Equation (3.11) implies that ¥ tends to infinity as Cf,
tends to either zero or infinity. Hence, v has a minimum

J. R. Soc. Interface (2008)

Upin; 1t is shown in appendix C that, in the non-
cavitating flow regime, this minimum is obtained at the
highest possible value of the lift coefficient, i.e. at Cp, max
or (1,1, whichever is smaller.

We could not find a consensus value in the literature
for the maximal beat frequency; hence, we shall avoid
substituting any numbers. The trends however are of
interest. Assuming for a moment that a fish consists of
an elastic material having an effective Young modulus
E, (e.g. Collinsworth et al. 2002) and density py,, let
a=+/E,/py, be the longitudinal wave propagation
velocity (e.g. Graff 1975). Response time of an elastic
body to an impulse should be proportional to the
ratio of the characteristic length to the propagation
velocity, i.e. the ratio I/ a.

The contraction of a muscle is triggered by Ca™® ™
ion concentration (Johnston 1983; Vander et al.
1985). Hence, there is a time delay between the
arrival of the nerve signal (action potential) and
the beginning of the muscle motion. Combining the
(physiological) time delay with the (elastic) response
time suggests that the maximal beat frequency can be
approximated by the ratio

a

fmax &« m )

(3.13)

where [ is a certain constant associated with the time
delay.

A ‘real’ muscle is composed of cells that are
approximately of the same size for small and large
fishes alike. Hence, the propagation velocity (directly
dependent on the cells-averaged value of the effective
Young modulus) should be insensitive to the body
length. At the same time, both Ca™ * ion concentration
and the propagation velocity are governed by a series of
enzymatic reactions (Vander et al. 1985). The reaction
rates increase with temperature, increasing a and
decreasing [y, and hence increasing f;, ..

Combining equation (3.13) with equation (3.12), it
appears that, insofar as the maximal beat frequency
limit on the swimming velocity is concerned, the
fastest swimmers should be large and warm bodied.
Yet, for very large swimmers (for which propagation
time is large when compared with the time delay) the
maximal beat frequency limit on the swimming
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Figure 6. Maximal swimming velocity with A= 0.2, Cpo=0.01, k=0.05, C1,max=1.2, (a) Cp,=0.2 and (b) Cp1,=0.4. Curved
solid lines mark power limit on the swimming velocity—the respective power per unit mass of the fish is marked to the right of
each line. The horizontal lines mark cavitation limits for 9% (solid lines) and 20% (dashed lines) thick foils near the surface (lower

sets) and at the depth of 50 m (higher sets).

velocity (whether associated with the onset of
cavitation or with the onset of stall) turns out to be
independent of the body length.

4. DISCUSSION

Power and cavitation limits on the swimming velocity
have been combined in figure 6. Maximum tail beat
frequency limit has not been shown owing to the
uncertainty in the particular value of that frequency.

Since the maximal power-limited velocity increases,
roughly, with the cube root of the body length, and
since both cavitation and tail beat frequency limits (for
large fishes) are independent of the body length, all
fishes are power limited when small and either
cavitation or tail beat frequency limited when large.
The particular body length at which the available
power limit is no longer the most severe constraint is
conditions (body temperature and depth) dependent.
Large swimmers at depth may have their top speed
limited by the combination of the standard stall of the
caudal fin and the maximal tail beat frequency; large
swimmers near the water surface may have their top
speed limited by cavitation.

In fact, cavitation poses a real limit on warm-bodied
large swimmers at shallow depth, with 10-15m s~ *
being the maximal cavitation-free velocity. Above that
speed cavitation is imminent. Lacking pain receptors on
their caudal fins, scombrids may temporarily cross the
cavitation limit, and cavitation-induced damage has
been observed (Kishinouye 1923); on the other
hand, delphinids probably cannot cross it without
pain (Lang 1966).

We have tacitly avoided unsteady hydrodynamic
effects and assumed that the caudal fin alignment—and
possibly flex—is adjusted so as to provide constant lift
coefficient during the beat cycle. For a given lift
coefficient, chord-wise flexibility (Katz & Weihs 1978)
will increase the leading edge suction causing cavitation
at lower swimming speeds. Unsteady effects will
increase the drag coefficient of the tail, but since its
drag is normally small when compared with that of the
fish body, it will only have a small effect on the velocity
limits as discussed above.

J. R. Soc. Interface (2008)

APPENDIX A. CAVITATION LIMIT ON THE LIFT
COEFFICIENT OF HYDROFOILS

Consider an aerofoil generated by Joukowski transfor-
mation (Milne-Thomson 1973)
2

a

of a circle .
z=a(o + (1 +0)c?), (A2)

fe[—m, w) on the complex plane. It is a symmetrical
aerofoil of chord

¢ = 4a(1 + 0(c?)), (A 3)
thickness
t= c3fa(1 + 0(?) (A 4)
and leading edge radius
g = 2ca”. (A5)

Its leading edge is generated by the part of the circle near

the real axis on the right-half plane, i.e. where @ is small.
The complex potential W about this aerofoil, which

satisfies the Kutta condition at its trailing edge is

a*(1 + o?)?
(z—a0)

W(2) = — e (z— a0) — tge ™

—2iuga(l + o)sin « In(z — aog),

(A 6)

where u, is the velocity of the flow (from right to left)
and « is the angle of attack, i.e. the angle between the
oncoming flow and the chord. The velocity @ on the
surface of this aerofoil immediately follows equation
(A 6) by definition of the complex potential (Batchelor
1990); it yields

. dW(z) dz
6 — 1 —
Qo) zﬂa(aiggra)em)( dz dC)

2% —id 1 i0\2
=y, Ao o AT G (wt 6) +sina).
(c+(1+0)e?)—1

(AT)
The pressure p and the associated pressure coefficient,
p(0)—p
Co(o) =220 (A8)
pus,
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on the aerofoil surface immediately follow Bernoulli’s
theorem,
I, 1 2
p(0) = pa +§puw - §P| QI
where pq is the pressure of the unperturbed fluid.
Now consider a particular thin Joukowski aerofoil at
a small, but non-zero angle of attack. Formally, we set
o= ae and g = ge where ¢ is a certain small parameter
and all marked quantities are of the order of unity.
For the analysis of the cavitation limit on aerofoil
performance, we seek the lowest pressure developing on
the aerofoil surface. It is assumed—subject, of course,
to an a posteriori verification—that the lowest pressure
develops in the vicinity of the leading edge, i.e. where
6= fe. Thus,

Q) = —iu<

(A9)

200+ 6
20 +1i6

(1+30) + 0(82)). (A 10)

From equations (A 8)—(A 10), it immediately follows
that:

_ (20 + 0)2 9
This function has a minimum
2
Coamin = — — (1 + 60) —60 + O(&?), (A 12)
o
at )
2
7 (A 13)

O = ————.
mn T+ 0(2)

Since ¢?/a=ed’/a by definition, and all marked
quantities were assumed to be of the order of unity,
equation (A 13) confirms our initial assumption that 6,
issmall. In fact, for an infinitely thin section, the minimal
pressure is exactly at the leading edge (Milne-Thomson
1973). However, equation (A 12) should be applied with
caution for a thick section at a very small angle of attack,
where the point of minimal pressure moves away from
the leading edge towards the thickest part of the section
and 6,,;, may no longer be assumed small.

In spite of being approximate and based on a thin
Joukowski section, the estimate of (A 12) for the
minimal pressure developing on an aerofoil nicely fits
the results reported by Lang (1966) for a thick, 0.2
chord, dolphin caudal fin section (figure 7).

Based on general physical considerations, the mini-
mal pressure developing on a wing section is a local
phenomenon depending on the lift of the section (which
defines the circulation about the section) and a local
curvature. We therefore suggest, without a derivation,
that the variant

2¢ T T
Co o =—a2 22 146/ ) —6./[2LE & 02
P,min o 'rLE( + %2 2% + (8)
(A 14)

of equation (A 12), where all os have been replaced
using equation (A 5), may have a wider application
than equation (A 12). In fact, using equation (A 14)
with the value of the leading edge radius measured by
Lang (1966) offers a better fit to his data than equation
(A 12) with the measured value of the section thickness.
With this in mind, we shall proceed using ¢ since it
results in shorter expressions.

J. R. Soc. Interface (2008)

0 1 2 3 4 5 6 7

o (deg.)

Figure 7. Minimal pressure coefficient on the surface of a 0.2
chord thick dolphin caudal fin. Circles mark the data
extracted from fig. 2 of Lang (1966), dashed line marks the
approximation (A 12) with ¢t=0.2c and solid line marks the
approximation (A 14) with r5=0.042c.

Cavitation first appears when the lowest pressure on
the aerofoil drops below the vapour pressure, p,. Since
the former decreases with the angle of attack, see
equation (A 12), cavitation will be avoided if the angle
of attack is kept below
K —6o 0 (82)
1+ 60

= oV K —60 + O(?),
the angle of attack where the lowest pressure on the

aerofoil p,.;, equals p,. Here,

Pa— Dy
pu,

o, =a

(A 15)

K =2

(A 16)

is the cavitation number (Batchelor 1990). Since the lift
coefficient of a Joukowski aerofoil is

CL =2n(1+a)a + O(*) = 2ma + O(¢*) (A 17)

(Batchelor 1990). Equation (A 15) implies that cavita-
tion will first develop when the section lift coefficient
will reach

Cr. =2m0V K —60 + O(e). (A 18)

The pressure of the unperturbed fluid, pgq, changes
with depth d by

pa + po = pyd, (A 19)

where py is the atmospheric pressure and g is the
acceleration owing to gravity. Moreover, at relevant
water temperatures, p, measures one hundredth of an
atmosphere and hence can be practically neglected.
Accordingly, equation (A 18) can be recast as

2 d
Cre :QWJ\/M—GU (A 20)
: oul
or, equivalently,
2 _ .2
o=y |4 2= (A 21)
U
where
72 3
7 =m/240° = m|/ ! e (A 22)
c
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is a shape parameter and

d ]2 d
udz\/p(ﬂrpg _ 1 c\/p(ﬂ;pg (A 23)

3(7[) 9TLE

is a cavitation velocity constant. It can be loosely
interpreted as a velocity at which cavitation appears
with no lift (see the text following equation (A13)).
Noting that u2 = u? + v* = v*(1+ ©?), equation (2.11)
immediately follows.

APPENDIX B. MINIMAL POWER

Given the lift and drag coefficients of the caudal fin, Cf,
and Cp = Cpy+ kCi as well as the drag coefficient of
the fish body, Cp,, sustained swimming with constant
forward velocity w is possible only if the tail moves with
lateral velocity v= uwv, where v is the solution of

(CL@— CD) V 1+ '{)2 = CD,b

(see equation (2.5)). The associated propulsion effi-
ciency is given by

(B1)

) Cous

Cpyp + (1 +3)2Cp

(see equation (2.9)). We seek the lift coefficient Cf and
the associated 7" yielding minimum for 7.

First, let us assume that n has an extremum at

Cp, = Cf. In this event, the derivative dn/dCy
vanishes, and therefore

v 3v  2kC
ac, 1+ | Cp

(B2)

But _ _
U+ CLgr—2kC, Ui

(CLv— Cp)

by equation (B 1). Hence, upon eliminating dv/9Cy,,

one finds

30D701—)2 _kCL (40])1()17) + 4]{3’?}0% + CL(Q + 172)) =0

(B4)

at Cp, = Cf. (B5)
Setting, temporarily,

7= w(C, (B6)
where w is a certain function of Cf,, one arrives at

- SCD’O’U}Q _4I€CD1()’U/ —2k

2 _ F
CL 4]{;211) T ka at CL = OL (B 7)
and, obviously,
_ 3CD_0w2 _4]€CD70U)_2]€ +
v=w\/ ETER at C, = C7. (B8)

Substituting equations (B 7) and (B 8) into equation
(B 2) yields a single equation for w, which can be easily
solved numerically. An approximate analytical solution
follows.

It is well known that C}=,/Cpo/k is the
lift coefficient yielding maximal lift-to-drag ratio
E*=(2,/Cpok) " of the aerodynamic surface—a fin,
in our case. With these, let Cp = C/C; and
C'D’b = (p,,/ CY; consequently, equation (B 5) can be

J. R. Soc. Interface (2008)

rewritten as

200,

*

37

(1 + Ci) —Cl2+?) =0 atC,=Cy.

(B9)

But E* is typically very large (a few tens), whereas C},
is of the order of unity. Thus assuming, subject of
course to an a posteriori verification, that 7 and C|, are
each of the order of unity as well, the term involving E*
in equation (B 9) can be neglected, leaving

207}
2 __ L
v =)

= at Cp = OF.
32 L L

(B 10)

Substituting it back into equation (B1) yields an
equation for the optimal lift coefficient

s 2@;2 1 ~+2 2532 _7

(B11)

Equation (B 11) can be simplified further by
neglecting the term involving E” (using the same
arguments as in equation (B 10)). The result is

C+2
L
P

e 2(3+C‘L+2) — Oy

(B12)
This equation possesses an analytical solution for C’E
(it reduces to a third-order equation), but it is too
lengthy to be presented here explicitly. Substituting
equations (B 12) and (B 10) back into equation (B 1)
yields the minimal efficiency

_ 3/2 _
(1—q* 3+ 072\ P14 07
E e ~ 12 A
n 3—-Cf 2Cpy,
Since C’f is a function of OD,b only by equation (B 12),
it immediately follows that the right-hand side of
equation (B 13) is a function of Cp), only as well. This

result is the basis of the graphical representation in
figure 2.

(B13)

APPENDIX C. MINIMAL LATERAL TAIL
VELOCITY

Given the lift and drag coefficients of the caudal fin, C,
and Cp= Cp,+ kC?, as well as the drag coefficient of
the fish body, Cp, sustained swimming with constant
forward velocity w is possible only if the tail moves with
lateral velocity v= uv, where v is the solution of

(CLT}_ CD) V 1 + 172 = CD,b (C 1)

(equation (2.5)). We seek the lift coefficient C7f yielding
minimum for ¥, or, in other words, we seek the lift
coefficient of the tail for which swimming with velocity
u requires the slowest tail motion.

First, let us assume that v has an extremum at
C1, = C7.In this event, the derivative dv/d C}, vanishes,
and therefore by differentiating on both sides of
equation (C1) with respect to Cr, we readily obtain
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Cy, is the solution of the conjunction of equations (C1)
and (C2).

For high aspect ratio fins, k is of the order of 0.1.2
Assuming, subject to a posteriori verification, that Cr
is of the order of unity, equation (C2) implies that v at
CL= C}i is of the order of k& and, hence, small as
compared with unity. Consequently, the conjunction of
equations (C1) and (C2) yields

(2kCT* — Cpo) (1 +2KC2 +++) = Cpy,  (C3)

where the ellipsis stands for higher order terms with
respect to k. Its leading order solution is

CF =~ (Cpo + Cpy)
L=
k
With the typical Cpo~0.01, Cp,~0.2 and k~0.1, it
immediately follows that this optimal lift coefficient
equals approximately 1.5. It is, indeed, of the order of
unity, but greater than the maximal attainable lift
coefficient Cf,,,.x. Hence, ¥ has no extremum for
admissible values of the lift coefficients, and it attains
a minimum at the maximal lift coefficient possible, i.e.
at CL,max~

(C4)
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