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Speed limits on swimming of fishes
and cetaceans

G. Iosilevskii* and D. Weihs

Faculty of Aerospace Engineering, Technion, Haifa 32000, Israel

Physical limits on swimming speed of lunate tail propelled aquatic animals are proposed.
A hydrodynamic analysis, applying experimental data wherever possible, is used to show that
small swimmers (roughly less than ametre long) are limited by the available power, while larger
swimmers at a few metres below the water surface are limited by cavitation. Depending on the
caudal fin cross-section, 10–15 m sK1 is shown tobe themaximumcavitation-free velocity for all
swimmers at a shallow depth.

Keywords: swimming speed; maximal speed limit; cavitation
1. INTRODUCTION

In a curious example of converging evolution, all of the
fastestmarine swimmers have similar propulsion systems
that are based on a narrow crescent caudal fin, better
known as the ‘lunate tail’ (Lighthill 1969). Dolphins,
tunas and mackerel sharks are obvious members of this
group. Since the pioneering work of Gray (1936), the
maximal speed attainable by these swimmers has been
repeatedly debated (e.g. Wardle 1975; Wardle & Videler
1980), undoubtedly fuelled by reports of yellowfin tuna
and wahoo swimming faster than 20 m sK1 (Walters &
Fierstein 1964) and anecdotal reports of dolphins over-
taking fast vessels. Yet undisturbed measurements of
dolphin swimming (Fish & Rohr 1999) have never
resulted in speeds in excess of 15 m sK1, suggesting that
reports of much higher speeds could have been biased by
proximity to the observing vessel (Weihs 2004).

In this study, we show that a swimming speed in
excess of 15 m sK1 is hardly possible at a shallow depth
due to cavitation of the caudal fin. To this end, we
examine possible limits on the maximal speed attain-
able by lunate tail propulsion, which result from (i)
maximal power that can be produced by the swimmer’s
muscles, (ii) a combination of the hydrodynamic stall of
the fin and the (physiological) limit on the maximal tail
beat frequency, and (iii) from an onset of cavitation.

Stall, and the associated loss of hydrodynamic lift
and rise of drag, is caused by boundary layer separation
from the foil surface (Batchelor 1990). The boundary
layer separates either due to an unfavourable pressure
gradient over the leeward surface of the fin (henceforth
referred as ‘standard’ stall) or due to appearance of
vapour bubbles, forming whenever the surface pressure
drops below the vapour pressure of the liquid in which
the fin moves. The latter phenomenon is known as
cavitation (Batchelor 1990). These vapour bubbles
move downstream into the area of higher pressure and
collapse. If the collapse occurs at the fin surface (and it
depends on operating conditions), damage may occur to
orrespondence (igil@aerodyne.technion.ac.il).
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the fin surface. If the collapse occurs downstream of the
trailing edge, it suggests a cavitation-triggered stall.
The unfavourable pressure gradient increases with the
increasing angle of incidence of the fin. The surface
pressure drops both with the increasing angle of
incidence and the swimming speed. Since a high angle
of incidence is necessary to increase the speed for a
given tail beat frequency, both stall and cavitation limit
the thrust produced by the fin and hence set limits on
the maximal swimming speed.

Prerequisites to our analysis of the speed limits are
relations between the angle of incidence of the fin (or,
rather, its lift coefficient), its velocity relative to the
fluid, the swimming velocity and, of course, the power
required tomove the fin. In principle, these relations can
be extracted from any of the numerous studies published
during the last 40 years; the works of Lighthill (1970),
Chopra (1974, 1976), Chopra & Kambe (1977) and
Cheng & Murillo (1984) are pertinent examples. None-
theless, we prefer using none of them ‘as is’. Being aimed
at calculating the propulsion efficiency and the tail
feathering as accurately as possible, they are too
detailed for the basic analysis we perform here. Hence,
we begin this study by recapitulating the analysis of
lunate tail propulsion using as simple an approach as we
believe practical.
2. ANALYSIS

2.1. Balance of forces

Consider a fish of length lmovingwith a constant velocity
u in a fluid of density r by caudal fin propulsion. The
caudal fin has an area Sc; it oscillates laterally with an
amplitude hZ �hl and a frequency f, moving with a lateral
velocity v. The lift L and drag D of the caudal fin can be
expressed in terms of its respective lift and drag
coefficients, CL and CD,

LZ
1

2
rðu2 Cv2ÞScCL and D Z

1

2
rðu2 Cv2ÞScCD:

ð2:1Þ
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Figure 1. Swimming model. With fish body moving along the solid horizontal line, the tail is assumed to move along the dotted
sawtooth trajectory. Its wave-length, x, is the stride length and its depth is 2h. The ratio of 4h and x is also the ratio of the
(presumably constant) lateral tail velocity v to the (constant) swimming velocity u.

1Based on table V, the body drag coefficient is estimated to be
approximately 0.005 when referred to the body surface area.
Assuming similarity in body shape among the scombrids (table
VII), their surface area can be approximated as 0.45l 2 (indeed, a
44 cm long skipjack tuna has a surface area of 840 cm2 (table VI),
whereas 40 cm long Kawakawa has the surface area of 720 cm2 (table
XI). At the same time, caudal fin area, for most scombrids, is
approximately 0.011l 2 (table X). Hence, the representative value of
CD,b is approximately 0.2—0.005 times the body area divided by the
caudal fin area.
2For symmetrical cross-sections at the pertinent range of Reynolds
numbers, CD,0 is typically found between 0.008 and 0.012 (Jacobs
1931b). The value of k can be estimated using semi-empirical formula
kZ1/(pAe)Cd, relating it with the aspect ratioA of the fin, span-wise
loading correction constant e, typically approximately 0.9, and profile
parasite drag rise constant d, typically approximately 0.01 (Jacobs
1931b; Nicolai 1984). Since 4!A!8 for most scombrids (Magnuson
1978), therefore 0.05!k!0.1.
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Likewise, the drag of the body, without the fin, can be
expressed in terms of its drag coefficient, CD,b, by

Db Z
1

2
ru2ScCD;b: ð2:2Þ

Note that all hydrodynamic coefficients defined thus far,
lift and drag of the caudal fin and the drag of the body, use
the caudal fin area as the reference area.

In order to simplify the following derivations, it will
be assumed that the lateral velocity, v, as well as the lift
and drag coefficients, CL and CD, of the caudal fin are
constants, with v and CL changing side each half period
(figure 1). Limitations of this assumption will be
discussed later on.

Now, let �vZv=u be the ratio of lateral-to-forward
velocities. Under the present assumptions, this ratio is
closely related with the stride length �xZu=fl—the
distance in body lengths travelled during one period. In
fact, under present assumptions, vZ4hf and, therefore,

�v Z 4�h=�x: ð2:3Þ
For constant speed swimming, the forward thrust

produced by the caudal fin should balance the drag of the
fish and the fin combined. Hence, after rearrangement

1

2
rðv2 Cu2ÞSc

vCLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 Cu2

p K
uCDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 Cu2

p
� �

Z
1

2
ru2ScCD;b

ð2:4Þ
or, eventually,

ðCL�vKCDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p
ZCD;b: ð2:5Þ

2.2. Power

The power spent by the caudal fin during the stroke is
given by

P Z
1

2
rðv2 Cu2ÞvSc

CLuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 Cu2

p C
CDvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 Cu2

p
� �

Z
1

2
ru3ScðCL C �vCDÞ�v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p
: ð2:6Þ

Applying the longitudinal force balance (2.5), equation
(2.6) can be recast as

P ZPb 1Cð1C �v2Þ3=2 CD

CD;b

� �
; ð2:7Þ

where

Pb Z
1

2
ru3ScCD;b; ð2:8Þ
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is the power required to move the fish body (caudal fin
excluded) at velocity u, and the term in parentheses can
be interpreted as the reciprocal of a propulsive
efficiency h, i.e.

hZ
Pb

P
Z

CD;b

CD;b Cð1C �v2Þ3=2CD

: ð2:9Þ
2.3. Drag coefficients

In order to make use of the above results, the actual
values for the drag coefficients are needed. The value of
coasting (stretched straight) CD,b for scombrids can be
estimated from the data presented in tables V, VI, VII,
X and XI of Magnuson (1978); it turns out to be
approximately 0.2.1 The value of CD,b for delphinids
and lamnids should be slightly higher owing to the drag
of their fixed dorsal and pectoral fins.When strenuously
swimming, the average body drag may increase (Fish &
Rohr 1999; Weihs 2004). We shall avoid addressing this
issue specifically by providing estimates of swimming
velocity limits for different drag coefficients.

The drag coefficient of the caudal fin CD can be
estimated based on the standard parabolic relation
(Nicolai 1984),

CD ZCD;0 CkC 2
L; ð2:10Þ

where CD,0 and k are constants. CD,0 is estimated to be
approximately 0.01 and is known to be rather
insensitive to the particular fin ‘design’ (Jacobs
1931b); k depends mainly on the fin aspect ratio
(Nicolai 1984) and is bounded between 0.05 and 0.1
for all the swimmers mentioned earlier.2
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2.4. Stall and maximal lift coefficient

Any foil can keep the flow attached to both its surfaces
only up to a certain angle of attack. Above that angle,
the flow on the leeward (suction) surface of the foil
separates due to an unfavourable pressure gradient
(with pressure increasing towards the trailing edge),
causing a loss of lift and an increase in drag; this
phenomenon is called ‘stall’. At high Reynolds
numbers in air, the lift coefficient obtained on the
verge of stall is the maximal lift coefficient, CL,max,
which can be generated by the foil. It varies between
1.0 and 1.2 (Jacobs 1931a,b) for both scombrids, which
have a relatively thin caudal fin cross-section with
a thickness-to-chord ratio of approximately 0.09
(F. Fish 2006, personal communication), and delphi-
nids and lamnids, which have a much thicker caudal
cross-section with thickness-to-chord ratio of up to 0.2
(Lingham-Soliar 2005).
2.5. Cavitation

At sufficiently high swimming velocity, the pressure
due to acceleration of the flow around the leading edge
may locally drop below the vapour pressure, causing
vapour-filled cavities (bubbles) to appear. This
phenomenon is known as cavitation (Batchelor 1990).
The bubbles are carried downstream by the flow into
the rear high-pressure region mentioned above, where
they collapse. If the collapse occurs on the surface of the
foil, it can damage the surface of the foil. If the collapse
occurs downstream of the training edge, it suggests a
fully separated flow regime, which can be referred to as
a cavitation-induced stall. In apparent contrast with
the standard pressure-gradient-induced stall, the lift
coefficient obtained on the verge of cavitation-induced
stall is not necessarily the maximal possible lift
coefficient at that velocity. This maximal (cavitating)
lift coefficient is probably almost the same as the non-
cavitating CL,max. The main difference between the two
is in the associated drag coefficient, which is an order of
magnitude larger in the cavitating flow.

The lift coefficientCL,c at which cavitation appears is
derived in appendix A. It is given, approximately, by

CL;czt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
d

u2ð1C �v2ÞK1

s
; ð2:11Þ

where t is a parameter depending on the foil section and
ud is a parameter depending both on the foil section and
on the fluid pressure at the swimming depth. For
example, for a Joukowski profile (Milne-Thomson
1973) of thickness t and chord c moving at depth d,

tZps
ffiffiffiffiffiffiffiffi
24s

p
; ð2:12Þ

ud Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 Crgd

3sr

s
; ð2:13Þ

where

sZ
4ffiffiffiffiffi
27

p t

c
ð2:14Þ

is the shape parameter; p0 is the atmospheric pressure;
and g is the acceleration owing to gravity. For different
J. R. Soc. Interface (2008)
cross-section shapes, the expression for CL,c has a
similar form, but with a slightly different relation
between s and the thickness ratio t/c. Typical values of
t range from 0.28 to 0.93—the former is the charac-
teristic of the 8–9% chord thick sections of scombrids
(F. Fish 2006, personal communication), and the latter
is the characteristic of the 20% chord thick sections of
delphinids and lamnids (Lingham-Soliar 2005). Associ-
ated values of ud, when swimming near the sea surface,
range between 22 and 15 m sK1, respectively.

Equation (2.11) indicates that cavitation will
precede the standard stall whenever the fin velocity

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p
exceeds udt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 2

L;maxCt2
q

, i.e. approxi-
mately 6 m sK1 for scombrids and 10 m sK1 for delphi-
nids and lamnids near the sea surface. Cavitation
becomes imminent at any lift coefficient once the fin
velocity exceeds ud. However, since the fin velocity is
always greater than the swimming velocity and
swimming requires a finite (non-zero) lift coefficient to
produce thrust, the swimming velocity at which
cavitation develops will always be lower than ud, as,
indeed, will be shown below.
3. SWIMMING VELOCITY LIMITS

3.1. Power limit

Given any swimming velocity u, there are an infinite
number of combinations of the lift coefficient and the
lateral velocity satisfying equation (2.5). For each
combination, the power required to move the fish
through water can be computed using equation (2.7).
The power is infinite for both vanishingly small and
infinitely large lift coefficients—�v turns infinite for the
former by equation (2.5), and CD turns infinite for the
latter by equation (2.10). Hence, the power has a
minimum PminZPb/hmax for a certain finite lift
coefficient (at which the propulsion efficiency h reaches
its maximum hmax). At the same time, there exists a
(physiological) maximum Pmax on the available power
in the fish muscles. Combination of (hydrodynamic)
Pmin and (physiological) Pmax yields a limit

umax;P Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hmaxPmax

rScCD;b

3

s
; ð3:1Þ

on the maximal swimming velocity.
Lift coefficient CC

L yielding a minimum of P (or,
equivalently, a maximum of the propulsion efficiency h)
can be found by differentiating equation (3.1), subject
to equation (2.5), with respect to CL and equating the
result to zero. With details found in appendix B, the
result is shown in figure 2. Here, E �Z1=ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
CD;0k

p
Þ and

C �
LZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CD;0=k

p
are the best hydrodynamic efficiency

(lift-to-drag ratio) of the caudal fin and the lift
coefficient at which this efficiency is achieved. Typical
values of the optimal lift coefficient for all swimmers
addressed herein vary between 0.25 (low aspect fins)
and 0.3 (high aspect fins) with corresponding efficien-
cies of 0.86–0.89. These values are on the higher side,
since they exclude unsteady effects (Lighthill 1970).

http://rsif.royalsocietypublishing.org/
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Figure 2. Minimal power required for (a) swimming and (b) the associated lift coefficient. CD,0 varies between 0.008 and 0.02
(about twice its maximal expected value), and k varies between 0.05 and 0.1. (a,b) All feasible combinations of these parameters
result in practically indistinguishable differences.

332 Speed limit on swimming G. Iosilevskii and D. Weihs

 rsif.royalsocietypublishing.orgDownloaded from 
The maximal available power can be always
expressed as a product

Pmax Z rbVb
�Pmax; ð3:2Þ

of the maximal available power per unit mass of the
swimmer, �Pmax, and the swimmer’s mass, rbVb; rb and
Vb being the body density and volume, respectively.
The body volume for scombrids can be estimated from
the data collected by Magnuson (1978); based on his
table VII and a typical body shape found in his fig. 10,
Vb is approximately 0.02l 3 forThunnus, Euthynnus and
Auxis, and approximately 0.01l 3 for Scomber. The body
density can be found in his table III, but for the sake of
simplicity it can be set roughly equal to that of water.

We could not find a consensus value in the literature
for themaximal available power per unitmass, �Pmax. It is
obviously species and conditions dependent, increasing
with body temperature. In the following discussion, we
have bracketed �Pmax with values ranging from 10 to
160 W kgK1 (Azuma 1992). The resulting values of
umax,P are shown in figure 6 at the end of this paper. In
the interim, we note that since caudal fin area changes,
approximately, with the length of the swimmer
squared, whereas the maximal available power varies,
approximately, with the length of the swimmer to the
third power, equation (3.1) shows that the maximal
velocity due the available power limit increases with cube
root of the swimmer’s length. Hence, insofar as this limit
is concerned, the fastest swimmers should have large-
volume (high Pmax) streamlined bodies (low ScCD,b) and
highaspect ratio tails (highhmax).They shouldpreferably
have high body temperature (high �Pmax). Indeed, all are
distinctive features of delphinids, scombrids and lamnids.
3.2. Cavitation limit

Substituting equations (2.10) and (2.11) into equation
(2.5) results in the equation

�vt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
d

u2
K1K�v2

r
K

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p

! CD;0ð1C �v2ÞCkt2
u2
d

u2
K1K�v2

� �� �
ZCD;b;

ð3:3Þ
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for the reduced lateral tail velocity �v (or its reciprocal,
which is proportional to the stride length) enabling
swimming at velocity u with caudal fin on the verge of
cavitation. Conversely, it can be solved to obtain
the cavitation incipient swimming velocity at a given
stride length

u

ud
Z

ktffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p �v2

2
Kk

CD;b CCD;0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p
 

Ck2t2G
�v2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K

4k

�v2
CD;b CCD;0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p

s 1
AKð1=2Þ

:

ð3:4Þ

The solution of equation (3.3) is shown in figure 3.
First, it is apparent that above a certain velocity
(henceforth referred as ‘uc’), swimming cannot be
sustained without cavitation. Below that threshold,
equation (3.3) has two solutions, �vc;1 and �vc;2. Cavita-
tion can be avoided only if �v is kept between the two—
moving the tail slower requires higher lift coefficient and
hence invokes cavitation, and moving the tail faster
increases the apparent flow velocity and invokes
cavitation as well.

The solutions of equation (3.3) for a given u have no
closed analytical form in the general case. Yet

ucz
udffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1C2
CD;bCCD;0

t

q ð3:5Þ

�vc Z �vc;1 Z �vc;2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CD;b CCD;0

t

r
ð3:6Þ

and

CL;czt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CD;b CCD;0

tCCD;b CCD;0

s
ð3:7Þ

provide good approximations for the maximal swim-
ming velocity, the corresponding stride length �xcZ
4�h=�vc and the associated lift coefficient (figures 3 and 4).
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CD,b/tZ0.8,CD,b/tZ0.04 and tkZ0.0125. Broken lines mark the approximation (3.8), circles mark the maximal speed estimate
of equations (3.5) and (3.6) and squares mark cavitation appearing at CL,1Z1.2.
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Likewise,

�vc;1z
CD;b CCD;0

t

1ffiffiffiffiffiffiffiffiffiffiffiffi
u 2
d

u2
K1

q Ctk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
d

u2
K1

r
ð3:8Þ

and

CL;1zt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 2
d

u2
K1

� �2
K

CD;bCCD;0

t

� �2
u 2
d

u2
K1

� �
C

CD;bCCD;0

t

� �2
vuuuut ð3:9Þ

provide good approximations for the minimal lateral
velocity (maximal stride length) and the correspond-
ing lift coefficient at no-cavitation boundary (figures 3
and 4).

It was mentioned earlier (see paragraph following
equation (2.14)) that cavitation will precede the

standard stall only if the fin velocity u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p
is larger

than udt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 2

L;maxCt2
q

. Equation (3.9) allows finding

the corresponding swimming velocity u s. In fact, setting
CL,1ZCL,max therein and solving it for u/ud yields an
J. R. Soc. Interface (2008)
estimate,

uszud 1C
C 2

L;max

2t2
C

1

2t2

 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 4

L;max C4ðCD;b CCD;0Þ2 t2 CC 2
L;max

� �r 1
AKð1=2Þ

;

ð3:10Þ

for the maximal swimming velocity possible with no
cavitation when the fin is on the verge of stall.

The maximal possible swimming velocity with no
cavitation, u c is shown in figure 4 for representative
values of the body drag coefficients; it is somewhere
between 10 and 15 m sK1. This velocity is insensitive to
the fin planform (indeed, approximation (3.5) for uc is
independent of k); it increases as the fin area increases
(lower CD,b) and it has a maximum for thickness-
to-chord ratio of 0.06–0.1. Perhaps a coincidence, but
these values are characteristic for scombrids.

The maximal swimming velocity with no cavitation
atCL,max, u s, is also shown in figure 4. It almost equals uc

for delphinids and lamnids (having a thickness ratio of
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0.2), but it is less than half of uc for scombrids. In other
words, delphinids can swim on the verge of stall
increasing speed by increasing the tail beat frequency
up until cavitation appears. There remains very little to
gain in the maximal speed by reducing the lift coefficient
and increasing the beat frequency. Scombrids can
accelerate on the verge of stall only up to a relatively
small velocity—almost one-third of their maximal
cavitation-free velocity. The latter can be reached only
by significantly reducing the lift coefficient. It can be
achieved only through excessive (when compared with
delphinids) flexibility of the tail joint.
3.3. Maximal tail beat frequency limit

Given the lift coefficient of the fin, CL, equation (2.5),
subject to equation (2.10), can be solved to yield the
reduced lateral velocity of the tail, �v, required to sustain
swimming velocity at that lift coefficient. Although this
solution cannot be expressed in a closed analytical form
in the general case, for all practical values of lift and
drag coefficients,

�vz
ðCD;b CCDÞ

CL

; ð3:11Þ

provides a very good approximation (figure 5a). The
associated stride length, �xZ4�h=�v, is shown in
figure 5b.

At the same time, there exists a (physiological)
maximum fmax on the possible tail beat frequency, and
hence there exists a constraint vmaxZ4�hlfmax on the
maximum possible lateral tail velocity. Combining the
(hydrodynamic) requirement of �v and (physiological)
limit vmax of v yields a limit

umax;f Z
vmax

�v
Z

4�hlfmax

�v
; ð3:12Þ

on the maximal swimming velocity at CL. Obviously, a
prerequisite of reaching the cavitation limit addressed
in §3.2 is the ability of the swimmer to move its tail
fast enough. Formally, it is required that vmax should
exceed �vc;1u.

Equation (3.11) implies that �v tends to infinity as CL

tends to either zero or infinity. Hence, �v has a minimum
J. R. Soc. Interface (2008)
�vmin; it is shown in appendix C that, in the non-
cavitating flow regime, this minimum is obtained at the
highest possible value of the lift coefficient, i.e. atCL,max

or CL,1, whichever is smaller.
We could not find a consensus value in the literature

for the maximal beat frequency; hence, we shall avoid
substituting any numbers. The trends however are of
interest. Assuming for a moment that a fish consists of
an elastic material having an effective Young modulus
Eb (e.g. Collinsworth et al. 2002) and density rb, let
aZ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb=rb

p
be the longitudinal wave propagation

velocity (e.g. Graff 1975). Response time of an elastic
body to an impulse should be proportional to the
ratio of the characteristic length to the propagation
velocity, i.e. the ratio l/a.

The contraction of a muscle is triggered by CaCC

ion concentration (Johnston 1983; Vander et al.
1985). Hence, there is a time delay between the
arrival of the nerve signal (action potential) and
the beginning of the muscle motion. Combining the
(physiological) time delay with the (elastic) response
time suggests that the maximal beat frequency can be
approximated by the ratio

fmaxf
a

lC l 0
; ð3:13Þ

where l 0 is a certain constant associated with the time
delay.

A ‘real’ muscle is composed of cells that are
approximately of the same size for small and large
fishes alike. Hence, the propagation velocity (directly
dependent on the cells-averaged value of the effective
Young modulus) should be insensitive to the body
length. At the same time, both CaCC ion concentration
and the propagation velocity are governed by a series of
enzymatic reactions (Vander et al. 1985). The reaction
rates increase with temperature, increasing a and
decreasing l0, and hence increasing fmax.

Combining equation (3.13) with equation (3.12), it
appears that, insofar as the maximal beat frequency
limit on the swimming velocity is concerned, the
fastest swimmers should be large and warm bodied.
Yet, for very large swimmers (for which propagation
time is large when compared with the time delay) the
maximal beat frequency limit on the swimming
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velocity (whether associated with the onset of
cavitation or with the onset of stall) turns out to be
independent of the body length.
4. DISCUSSION

Power and cavitation limits on the swimming velocity
have been combined in figure 6. Maximum tail beat
frequency limit has not been shown owing to the
uncertainty in the particular value of that frequency.

Since the maximal power-limited velocity increases,
roughly, with the cube root of the body length, and
since both cavitation and tail beat frequency limits (for
large fishes) are independent of the body length, all
fishes are power limited when small and either
cavitation or tail beat frequency limited when large.
The particular body length at which the available
power limit is no longer the most severe constraint is
conditions (body temperature and depth) dependent.
Large swimmers at depth may have their top speed
limited by the combination of the standard stall of the
caudal fin and the maximal tail beat frequency; large
swimmers near the water surface may have their top
speed limited by cavitation.

In fact, cavitation poses a real limit on warm-bodied
large swimmers at shallow depth, with 10–15 m sK1

being the maximal cavitation-free velocity. Above that
speed cavitation is imminent. Lacking pain receptors on
their caudal fins, scombrids may temporarily cross the
cavitation limit, and cavitation-induced damage has
been observed (Kishinouye 1923); on the other
hand, delphinids probably cannot cross it without
pain (Lang 1966).

We have tacitly avoided unsteady hydrodynamic
effects and assumed that the caudal fin alignment—and
possibly flex—is adjusted so as to provide constant lift
coefficient during the beat cycle. For a given lift
coefficient, chord-wise flexibility (Katz & Weihs 1978)
will increase the leading edge suction causing cavitation
at lower swimming speeds. Unsteady effects will
increase the drag coefficient of the tail, but since its
drag is normally small when compared with that of the
fish body, it will only have a small effect on the velocity
limits as discussed above.
J. R. Soc. Interface (2008)
APPENDIX A. CAVITATION LIMIT ON THE LIFT
COEFFICIENT OF HYDROFOILS

Consider an aerofoil generated by Joukowski transfor-
mation (Milne-Thomson 1973)

zZ zC
a2

z
; ðA 1Þ

of a circle
z Z aðsCð1CsÞeiqÞ; ðA 2Þ

q2[Kp, p) on the complex plane. It is a symmetrical
aerofoil of chord

cZ 4að1COðs2ÞÞ; ðA 3Þ
thickness

t Z c
3
ffiffiffi
3

p

4
sð1COðs2ÞÞ ðA 4Þ

and leading edge radius

rLE Z 2cs2: ðA 5Þ
Its leading edge is generated by the part of the circle near
the real axis on the right-half plane, i.e. where q is small.

The complex potential W about this aerofoil, which
satisfies the Kutta condition at its trailing edge is

W ðzÞZKuNe
iaðzKasÞK uNe

Kia a
2ð1Cs2Þ2

ðzKasÞ

K2iuNað1CsÞsin a lnðzKasÞ; ðA 6Þ
where uN is the velocity of the flow (from right to left)
and a is the angle of attack, i.e. the angle between the
oncoming flow and the chord. The velocity Q on the
surface of this aerofoil immediately follows equation
(A 6) by definition of the complex potential (Batchelor
1990); it yields

QðqÞZ lim
z/aðsCð1CsÞeiqÞ

dW ðzÞ
dz

dz

dz

� �

ZKuN
2ieKiqðsCð1CsÞeiqÞ2

ðsCð1CsÞeiqÞ2K1
ðsinðaCqÞCsinaÞ:

ðA7Þ
The pressure p and the associated pressure coefficient,

CPðqÞZ2
pðqÞKpd

ru2
N

; ðA8Þ
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on the aerofoil surface immediately follow Bernoulli’s
theorem,

pðqÞZpdC
1

2
ru2

NK
1

2
rjQðqÞj2; ðA9Þ

where pd is the pressure of the unperturbed fluid.
Now consider a particular thin Joukowski aerofoil at

a small, but non-zero angle of attack. Formally, we set
aZ �a3 and sZ �s3 where 3 is a certain small parameter
and all marked quantities are of the order of unity.
For the analysis of the cavitation limit on aerofoil
performance, we seek the lowest pressure developing on
the aerofoil surface. It is assumed—subject, of course,
to an a posteriori verification—that the lowest pressure
develops in the vicinity of the leading edge, i.e. where
qZ �q3. Thus,

QðqÞZKiu
2aCq

2sC iq
ð1C3sÞCOð32Þ

� �
: ðA 10Þ

From equations (A 8)–(A 10), it immediately follows
that:

cPðqÞZ 1K
ð2aCqÞ2

4s2 Cq2
ð1C6sÞCOð32Þ: ðA 11Þ

This function has a minimum

cP;min ZK
a2

s2
ð1C6sÞK6sCOð32Þ; ðA 12Þ

at

qmin Z
2s2

aCOð32Þ : ðA 13Þ

Since s2=aZ3�s2=�a by definition, and all marked
quantities were assumed to be of the order of unity,
equation (A 13) confirms our initial assumption that qmin

is small. In fact, for an infinitely thin section, theminimal
pressure is exactly at the leading edge (Milne-Thomson
1973). However, equation (A 12) should be applied with
caution for a thick section at a very small angle of attack,
where the point of minimal pressure moves away from
the leading edge towards the thickest part of the section
and qmin may no longer be assumed small.

In spite of being approximate and based on a thin
Joukowski section, the estimate of (A 12) for the
minimal pressure developing on an aerofoil nicely fits
the results reported by Lang (1966) for a thick, 0.2
chord, dolphin caudal fin section (figure 7).

Based on general physical considerations, the mini-
mal pressure developing on a wing section is a local
phenomenon depending on the lift of the section (which
defines the circulation about the section) and a local
curvature. We therefore suggest, without a derivation,
that the variant

CP;min ZKa
2 2c

rLE
1C6

ffiffiffiffiffiffiffiffi
rLE
2c

r� �
K6

ffiffiffiffiffiffiffiffi
rLE
2c

r
COð32Þ

ðA 14Þ

of equation (A 12), where all ss have been replaced
using equation (A 5), may have a wider application
than equation (A 12). In fact, using equation (A 14)
with the value of the leading edge radius measured by
Lang (1966) offers a better fit to his data than equation
(A 12) with the measured value of the section thickness.
With this in mind, we shall proceed using s since it
results in shorter expressions.
J. R. Soc. Interface (2008)
Cavitation first appears when the lowest pressure on
the aerofoil drops below the vapour pressure, pv. Since
the former decreases with the angle of attack, see
equation (A 12), cavitation will be avoided if the angle
of attack is kept below

ac Z s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KK6s

1C6s

r
COð32Þ

Z s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KK6s

p
COð32Þ; ðA 15Þ

the angle of attack where the lowest pressure on the
aerofoil pmin equals pv. Here,

K Z 2
pdK pv
ru2

N

ðA 16Þ

is the cavitation number (Batchelor 1990). Since the lift
coefficient of a Joukowski aerofoil is

CL Z 2pð1CsÞaCOð33ÞZ 2paCOð32Þ ðA 17Þ

(Batchelor 1990). Equation (A 15) implies that cavita-
tion will first develop when the section lift coefficient
will reach

CL;c Z 2ps
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KK6s

p
COð32Þ: ðA 18Þ

The pressure of the unperturbed fluid, pd, changes
with depth d by

pd Cp0 Z rgd; ðA 19Þ

where p0 is the atmospheric pressure and g is the
acceleration owing to gravity. Moreover, at relevant
water temperatures, pv measures one hundredth of an
atmosphere and hence can be practically neglected.
Accordingly, equation (A 18) can be recast as

CL;cz2ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp0 CrgdÞ

ru2
N

K6s

s
ðA 20Þ

or, equivalently,

CL;czt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
dKu2

N

u2
N

s
; ðA 21Þ

where

tZp
ffiffiffiffiffiffiffiffiffiffi
24s3

p
Zp

ffiffiffiffiffiffiffiffiffiffiffiffi
72r3LE
c3

4

s
; ðA 22Þ
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is a shape parameter and

ud Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 Crgd

3sr

s
Z

ffiffiffiffiffiffiffiffiffiffi
2c

9rLE

4

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 Crgd

r

s
ðA 23Þ

is a cavitation velocity constant. It can be loosely
interpreted as a velocity at which cavitation appears
with no lift (see the text following equation (A13)).
Noting that u2

NZu2Cv2Zu2ð1C �v2Þ, equation (2.11)
immediately follows.
APPENDIX B. MINIMAL POWER

Given the lift and drag coefficients of the caudal fin, CL

and CDZCD;0CkC 2
L, as well as the drag coefficient of

the fish body, CD,b, sustained swimming with constant
forward velocity u is possible only if the tail moves with
lateral velocity vZu�v, where �v is the solution of

ðCL�vKCDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p
ZCD;b ðB 1Þ

(see equation (2.5)). The associated propulsion effi-
ciency is given by

hZ
CD;b

CD;b Cð1C �v2Þ3=2CD

ðB 2Þ

(see equation (2.9)). We seek the lift coefficient CC
L and

the associated �vC yielding minimum for h.
First, let us assume that h has an extremum at

CLZCC
L . In this event, the derivative dh/dCL

vanishes, and therefore

v�v

vCL

3�v

1C �v2
C

2kCL

CD

at CL ZCC
L : ðB 3Þ

But
�vCCL

v�v
vCL

K2kCL

ðCL�vKCDÞ
C

�v v�v
vCL

1C �v2
Z 0; ðB 4Þ

by equation (B 1). Hence, upon eliminating v�v=vCL,
one finds

3CD;0�v
2KkCL 4CD;0�vC4k�vC 2

L CCLð2C �v2Þ
� �

Z 0

at CL ZCC
L : ðB 5Þ

Setting, temporarily,

�v ZwCL; ðB 6Þ
where w is a certain function of CL, one arrives at

C 2
L Z

3CD;0w
2K4kCD;0wK2k

4k2wCw2k
at CL ZCC

L ðB 7Þ

and, obviously,

�v Zw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3CD;0w

2K4kCD;0wK2k

4k2wCw2k

s
at CL ZCC

L : ðB 8Þ

Substituting equations (B 7) and (B 8) into equation
(B 2) yields a single equation for w, which can be easily
solved numerically. An approximate analytical solution
follows.

It is well known that C �
LZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CD;0=k

p
is the

lift coefficient yielding maximal lift-to-drag ratio
E �Zð2

ffiffiffiffiffiffiffiffiffiffiffiffi
CD;0k

p
ÞK1 of the aerodynamic surface—a fin,

in our case. With these, let �CLZCL=C
�
L and

�CD;bZCD;b=C
�
L; consequently, equation (B 5) can be
J. R. Soc. Interface (2008)
rewritten as

3�v2K
2�v �CL

E � 1C �C
2
L

� �
K �C

2
Lð2C �v2ÞZ 0 at CL ZCC

L :

ðB 9Þ

But E � is typically very large (a few tens), whereas C �
L

is of the order of unity. Thus assuming, subject of
course to an a posteriori verification, that �v and �CL are
each of the order of unity as well, the term involving E �

in equation (B 9) can be neglected, leaving

�v2z
2 �C

2
L

3K �C
2
L

at CL ZCC
L : ðB 10Þ

Substituting it back into equation (B 1) yields an
equation for the optimal lift coefficient

�C
C
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �C

C2
L

3K �C
C2
L

s
K

1

2E � 1C �C
C2
L

� � ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C

2 �C
C2
L

3K �C
C2
L

s
Z �CD;b:

ðB11Þ

Equation (B 11) can be simplified further by
neglecting the term involving E � (using the same
arguments as in equation (B 10)). The result is

�C
C2
L

3K �C
C2
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3C �C

C2
L

� �r
Z �CD;b: ðB12Þ

This equation possesses an analytical solution for �C
C
L

(it reduces to a third-order equation), but it is too
lengthy to be presented here explicitly. Substituting
equations (B 12) and (B 10) back into equation (B 1)
yields the minimal efficiency

E � 1KhC

hC

� �
z

3C �C
C2
L

3K �C
C2
L

 !3=2
1C �C

C2
L

2 �CD;b

: ðB13Þ

Since �C
C
L is a function of �CD;b only by equation (B 12),

it immediately follows that the right-hand side of
equation (B 13) is a function of �CD;b only as well. This
result is the basis of the graphical representation in
figure 2.
APPENDIX C. MINIMAL LATERAL TAIL
VELOCITY

Given the lift and drag coefficients of the caudal fin, CL

and CDZCD;0CkC 2
L, as well as the drag coefficient of

the fish body, CD,b, sustained swimming with constant
forward velocity u is possible only if the tail moves with
lateral velocity vZu�v, where �v is the solution of

ðCL�vKCDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C �v2

p
ZCD;b ðC 1Þ

(equation (2.5)). We seek the lift coefficient C �
L yielding

minimum for �v, or, in other words, we seek the lift
coefficient of the tail for which swimming with velocity
u requires the slowest tail motion.

First, let us assume that �v has an extremum at
CLZC �

L. In this event, the derivative d�v=dCL vanishes,
and therefore by differentiating on both sides of
equation (C1) with respect to CL we readily obtain

�vK2kCL Z 0 at CL ZC�
L; ðC 2Þ
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C*
L is the solution of the conjunction of equations (C1)

and (C2).
For high aspect ratio fins, k is of the order of 0.1.2

Assuming, subject to a posteriori verification, that C*
L

is of the order of unity, equation (C2) implies that �v at
CLZC*

L is of the order of k and, hence, small as
compared with unity. Consequently, the conjunction of
equations (C1) and (C2) yields

2kC �2
L KCD;0

� �
1C2k2C �2

L C/
� �

ZCD;b; ðC 3Þ

where the ellipsis stands for higher order terms with
respect to k. Its leading order solution is

C �
Lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCD;0 CCD;bÞ

k

r
: ðC 4Þ

With the typical CD,0w0.01, CD,bw0.2 and kw0.1, it
immediately follows that this optimal lift coefficient
equals approximately 1.5. It is, indeed, of the order of
unity, but greater than the maximal attainable lift
coefficient CL,max. Hence, �v has no extremum for
admissible values of the lift coefficients, and it attains
a minimum at the maximal lift coefficient possible, i.e.
at CL,max.
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